Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(13): 3428-3438, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37383075

RESUMO

The energy efficiency of buildings can be significantly improved through the use of renewable energy sources. Luminescent solar concentrators (LSCs) appear to be a solution for integrating photovoltaic (PV) devices into the structure of buildings (windows, for instance) to enable low-voltage devices to be powered. Here, we present transparent planar and cylindrical LSCs based on carbon dots in an aqueous solution and dispersed in organic-inorganic hybrid matrices, which present photoluminescent quantum yield values up to 82%, facilitating an effective solar photon conversion. These LSCs showed the potencial for being incorporated as building windows due to an average light transmittance of up to ∼91% and color rendering index of up to 97, with optical and power conversion efficiency values of 5.4 ± 0.1% and 0.18 ± 0.01%, respectively. In addition, the fabricated devices showed temperature sensing ability enabling the fabrication of an autonomous power mobile temperature sensor. Two independent thermometric parameters were established based on the emission and the electrical power generated by the LSC-PV system, which could both be accessed by a mobile phone, enabling mobile optical sensing through multiparametric thermal reading with relative sensitivity values up to 1.0% °C-1, making real-time mobile temperature sensing accessible to all users.

2.
Langmuir ; 37(6): 2011-2028, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533623

RESUMO

The production of superhydrophobic coatings inspired by the surface of plant leaves is a challenging goal. Such coatings hold a bright technological future in niche markets of the aeronautical, space, naval, building, automobile, and biomedical sectors. This work is focused on the adaxial (top) and abaxial (bottom) surfaces of the leaflet of the Ceratonia silique L. (carob), a high-commercial-value Mediterranean tree cultivated in many regions of the world. The adaxial and abaxial surfaces feature hydrophobic and superhydrophobic behaviors, respectively. Their chemical composition is very simple: monopalmitin ester and palmitic acid are protuberant in the epicuticular and intracuticular wax layers of the adaxial surface, respectively, whereas 1-octacosanol dominates in the abaxial wax layers. In both surfaces, epicuticular wax is organized along a randomly oriented and intricate network of nanometer-thick and micrometer-long plates, whose density and degree of interconnection are significantly higher in the abaxial surface. The measured tilting angles for the abaxial surface (12-70°) reveal unusual variable density and water adhesion of the nanostructured plate-based texture. Optical measurements demonstrate that light reflectance/absorbance of the glaucous abaxial surface is significantly higher/lower than that of the nonglaucous adaxial surface. In both surfaces, diffuse reflectance is dominant, and the absorbance is weakly dependent on the light incidence angle. We show that the highly dense nanostructured platelike texture of the epicuticular abaxial layer of the C. siliqua leaflet works as a sophisticated light and water management system: it reflects solar radiation diffusely to lower the surface temperature, and it has superhydrophobic character to keep the surface dry. Such attributes enable efficient gas exchange (photosynthesis and respiration), transpiration, and evaporation. To mimic for the first time the abaxial surface, a templation approach was adopted using poly(dimethylsiloxane) (PDMS)/poly(methylphenylsiloxane) (PMPS) positive/negative replicas and a soft polymer/siloxane negative replica produced by the sol-gel process. Because high topographical variations of the biotemplate and wax adhesion to the biohybrid film affected the replication quality, the reproduction of the wax texture via the synthesis of 1-octacosanol-grafted siloxane-based hybrid materials is proposed as a suitable route to duplicate the abaxial surface with high fidelity. The natural chemical/physical strategy adopted by the C. siliqua leaflet to face the harsh Mediterranean climate is a powerful source of bioinspiration for the development of diffuse reflecting and superhydrophobic material systems with foreseen applications as dual-functional antiglare and water-repelling coatings.


Assuntos
Fabaceae , Ceras , Galactanos , Mananas , Física , Gomas Vegetais , Folhas de Planta
3.
J Colloid Interface Sci ; 582(Pt A): 376-386, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861042

RESUMO

Electrospun poly(vinylidene fluoride) (PVDF) fiber membranes doped with different ionic liquids (ILs) and sharing the same anion were produced and their potential as separator membranes for battery applications was evaluated. Different types of ILs containing the same anion, bis(trifluoromethylsulfonyl)imide [TFSI]-, were used with IL concentrations ranging between 0 and 15 wt% The morphology, microstructure, thermal and electrical properties (ionic conductivity and electrochemical window) of the membranes were evaluated. The presence of ILs in the PVDF polymer matrix influences the fiber diameter and the content of the polar ß phase within the polymer, as well as the degree of crystallinity. The thermal stability of the membranes decreases with the incorporation of IL. Impedance spectroscopy tests show a maximum ionic conductivity of 2.8 mS.cm-1 for 15% of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) at room temperature. The electrochemical stability of the samples ranges from 0.0 to 6.0 V. When evaluated as battery separator membranes in C-LiFePO4 half-cells, a maximum discharge capacity of 119 mAh.g-1 at C-rate was obtained for the PVDF membrane with 15% [Emim][TFSI], with a coulombic efficiency close to 100%. The results demonstrate that the produced electrospun membranes are suitable for applications as separators for lithium ion batteries (LIBs).

4.
Chem Rec ; 18(7-8): 724-736, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29405617

RESUMO

The development of sophisticated organized materials exhibiting enhanced properties is a challenging topic of the domain of organic/inorganic hybrid materials. This review, composed of four sections, reports the work we have carried out over the last 10 years on the synthesis of amide cross-linked alkyl/siloxane hybrids by means of sol-gel chemistry and self-directed assembly/self-organization routes relying on weak interactions (hydrophobic interactions and hydrogen bonding). The various as-produced lamellar structures displaying a myriad of morphologies, often closely resembling those found in natural materials, are discussed. The major role played by the synthetic conditions (pH, water content, co-solvent(s) nature/concentration and dopant presence/concentration), the alkyl chains (length and presence of ramification or not) and the number of the amide cross-links present in the precursor, is evidenced. Examples of highly organized hybrids structures incorporating ionic species (alkali and alkaline earth metal salts) and optically-active centers (organic dyes and lanthanide ions) are described. A useful qualitative relationship deduced between the emission quantum yield of the ordered hybrid materials and the degree of order of the hydrogen-bonded network is highlighted.

5.
J Phys Chem B ; 109(15): 7110-9, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16851810

RESUMO

Fourier Transform mid-infrared (FT-IR), Fourier Transform Raman (FT-Raman) and photoluminescence spectroscopies and Two-Dimensional (2D) Correlation Spectroscopic Analysis were employed to examine the anionic and cationic local environments in mono-urethanesils doped with europium triflate (Eu(CF(3)SO(3))(3)). The hybrid host framework of these materials is composed of a siliceous backbone bonded through urethane linkages to CH(3)-terminated polymer chains containing about 7 OCH(2)CH(2) units. Samples with infinity >/= n (composition) >/=5 (where n = OCH(2)CH(2)/Eu(3+)) were studied. In terms of ionic association, the level of complexity of these xerogels is very high. In all the compounds the triflate ions exist "free", weakly coordinated and forming cross-link separated ion pairs. At 20 >/= n >/= 5, in addition to all these species contact ion pairs occur. In agreement with these conclusions, photoluminescence establishes the presence of three distinct cation local sites (Eu(3+)/O=C(urethane cross-links), Eu(3+)/O-C-C(polyether chains) and weakly coordinated Eu(3+)/CF(3)SO(3)(-) ionic pairs).

6.
J Phys Chem B ; 109(43): 20093-104, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16853598

RESUMO

Nd(3+)-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly(oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF(3)SO(3))(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), (29)Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...